Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 575

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Research on technical process for achieving denuclearization, 2; Disposal and verification of weapon grade plutonium

Shimizu, Ryo; Nakatani, Takayoshi; Tazaki, Makiko; Kimura, Takashi; Hori, Masato

Dai-44-Kai Nihon Kaku Busshitsu Kanri Gakkai Nenji Taikai Kaigi Rombunshu (Internet), 4 Pages, 2023/11

no abstracts in English

Journal Articles

Estimation of the activity median aerodynamic diameter of plutonium particles using image analysis

Takasaki, Koji; Yasumune, Takashi; Yamaguchi, Yukako; Hashimoto, Makoto; Maeda, Koji; Kato, Masato

Journal of Nuclear Science and Technology, 60(11), p.1437 - 1446, 2023/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The aerodynamic radioactive median diameter (AMAD) is necessary information to assess the internal exposure. On June 6, 2017, at a plutonium handling facility in Oarai site of Japan Atomic Energy Agency (JAEA), during the inspection work of a storage container that contains nuclear fuel materials, accidental contamination occurred and five workers inhaled radioactive materials including plutonium. Some smear papers and an air sampling filter were measured with the imaging plate, and we conservatively estimated minimum AMADs for two cases, plutonium nitrate and plutonium dioxide. As a result of AMAD estimation, even excluding a giant particle of a smear sample, the minimum AMADs of plutonium nitrate from smear papers were 4.3 - 11.3 $$mu$$m and those of plutonium dioxide were 5.6 - 14.1 $$mu$$m. Also, the minimum AMAD of plutonium nitrate from an air sampling filter was 3.0 $$mu$$m and that of plutonium dioxide was 3.9 $$mu$$m.

JAEA Reports

Stabilization of post-experiment nuclear materials in Plutonium Fuel Research Facility

Sato, Takumi; Otobe, Haruyoshi; Morishita, Kazuki; Marufuji, Takato; Ishikawa, Takashi; Fujishima, Tadatsune; Nakano, Tomoyuki

JAEA-Technology 2023-016, 41 Pages, 2023/09

JAEA-Technology-2023-016.pdf:2.74MB

This report summarizes the results of the stabilization treatments of post-experiment nuclear materials in Plutonium Fuel Research Facility (PFRF) from August 2018 to March 2021. Based on the management standards for nuclear materials enacted after the contamination accident that occurred at PFRF on June 6, 2017, the post-experiment nuclear materials containing plutonium (Pu): samples mixed with organic substances that cause an increase in internal pressure due to radiolysis (including X-ray diffraction samples mixed with epoxy resin and plutonium powder which caused contamination accidents), carbides and nitrides samples which is reactive in air, and chloride samples which may cause corrosion of storage containers, were selected as targets of the stabilization. The samples containing organic materials, carbides and nitrides were heated in an air flow at 650 $$^{circ}$$C and 950 $$^{circ}$$C for 2 hours respectively to remove organic materials and convert uranium (U) and Pu into oxides. U and Pu chlorides in LiCl-KCl eutectic melt were reduced and extracted into liquid Cd metal by a reaction with lithium (Li) -cadmium (Cd) alloy and converted to U-Pu-Cd alloy at 500 $$^{circ}$$C or higher. All of the samples were stabilized and stored at PFRF. We hope that the contents of this report will be utilized to consider methods for stabilizing post experiment nuclear materials at other nuclear fuel material usage facilities.

Journal Articles

Study on actinide burning core concepts for the future phaseout of a fast reactor fuel cycle

Mori, Tetsuya; Naganuma, Masayuki; Oki, Shigeo

Nuclear Technology, 209(4), p.532 - 548, 2023/04

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

This paper deals with a conceptual study on a plutonium (Pu) and minor actinide (MA) burning fast reactor core for the distant future phaseout of a fast-reactor fuel cycle after it is commercialized and used for a long time. This burning core aims to reduce the Pu and MA inventories contained in the fuel cycle through multiple recycling. A key point for the core design is the degradation of Pu and MA during multiple recycling. This degradation affects the core feasibility by increasing the sodium void reactivity and decreasing the absolute value of the Doppler constant. A feasible core concept was found by incorporating the following three factors to improve the reactivity coefficients: core flattening, fuel burnup reduction, and the use of silicon carbide (SiC) in the cladding and wrapper tubes. Notably, softening the neutron spectrum using the SiC structural material not only improved the reactivity coefficients but also indirectly mitigated the degradation of Pu and MA. Consequently, the designed core allowed for multiple recycling to continue until the Pu and MA reduced significantly, particularly by about 99% in a phaseout scenario starting from a fast-reactor fleet of 30-GWe nuclear power capacity. Fast reactors were found to have the potential to become self-contained energy systems that can minimize the inventories of Pu they produced themselves, as well as long-lived MA. Fast reactors can be among the important options for environmental burden reduction in the future.

JAEA Reports

Development of "MOX weighing and Ball-mill blending" based on experience in operation and maintenance of MOX fuel manufacturing equipment

Kawasaki, Kohei; Ono, Takanori; Shibanuma, Kimikazu; Goto, Kenta; Aita, Takahiro; Okamoto, Naritoshi; Shinada, Kenta; Ichige, Hidekazu; Takase, Tatsuya; Osaka, Yuki; et al.

JAEA-Technology 2022-031, 91 Pages, 2023/02

JAEA-Technology-2022-031.pdf:6.57MB

The document for back-end policy opened to the public in 2018 by Japan Atomic Energy Agency (hereafter, JAEA) states the decommissioning of facilities of Nuclear Fuel Cycle Engineering Laboratories and JAEA have started gathering up nuclear fuel material of the facilities into Plutonium Fuel Production Facilities (hereafter, PFPF) in order to put it long-term, stable and safe storage. Because we planned to manufacture scrap assemblies almost same with Monju fuel assembly using unsealed plutonium-uranium mixed-oxide (hereafter, MOX) powder held in PFPF and transfer them to storage facilities as part of this "concentration" task of nuclear fuel material, we obtained permission to change the use of nuclear fuel material in response to the new regulatory Requirements in Japan for that. The amount of plutonium (which is neither sintered pellets nor in a lidded powder-transport container) that could be handled in the pellet-manufacturing process was limited to 50 kg Pu or less in order to decrease the facility risk in this manufacture. Therefore, we developed and installed the "MOX weighing and blending equipment" corresponding with small batch sizes that functioned in a starting process and the equipment would decrease handling amounts of plutonium on its downstream processes. The failure data based on our operation and maintenance experiences of MOX fuel production facilities was reflected in the design of the equipment to further improve reliability and maintainability in this development. The completed equipment started its operation using MOX powder in February 2022 and the design has been validated through this half-a-year operation. This report organizes the knowledge obtained through the development of the equipment, the evaluation of the design based on the half-a-year operation results and the issues in future equipment development.

Journal Articles

Using CO$$_{2}$$ Reactions to Achieve Mass-spectrometric Discrimination in Simultaneous Plutonium-isotope Speciation with Inductively Coupled Plasma-Tandem Mass Spectrometry

Matsueda, Makoto; Kawakami, Tomohiko*; Koarai, Kazuma; Terashima, Motoki; Fujiwara, Kenso; Iijima, Kazuki; Furukawa, Makoto*; Takagai, Yoshitaka*

Chemistry Letters, 51(7), p.678 - 682, 2022/07

 Times Cited Count:5 Percentile:61.39(Chemistry, Multidisciplinary)

New methodology for a simultaneous isotope speciation of various Pu isotopes without complicated isobaric interferences is developed by using inductively coupled plasma-mass spectrometry (ICP-MS). In analyzing ICP tandem MS (ICP-MS/MS), CO$$_{2}$$ gas reactions in a dynamic reaction cell (DRC) almost eliminated the background noise intensity produced by isobaric interference from isotopes originating from actinides such as Am, Cm, and U at the locations (m/z) of significant Pu isotopes ($$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Pu, $$^{242}$$Pu, $$^{244}$$Pu).

Journal Articles

Fundamental study for decorporation of plutonium by chelating agents; Coordination analyses of simulated plutonium with chelating agents by X-ray absorption spectroscopy

Uehara, Akihiro*; Shuhui, X.*; Sato, Ryotaro*; Matsumura, Daiju; Tsuji, Takuya; Yakumaru, Haruko*; Shiro, Ayumi*; Saito, Hiroyuki*; Tanaka, Izumi*; Ishihara, Hiroshi*; et al.

Advances in X-Ray Chemical Analysis, Japan, 53, p.223 - 229, 2022/03

no abstracts in English

Journal Articles

The Chemistry of thorium, plutonium and MA

Sato, Nobuaki*; Kirishima, Akira*; Watanabe, Masayuki; Sasaki, Takayuki*; Uehara, Akihiro*; Takeda, Shino*; Kitatsuji, Yoshihiro; Otobe, Haruyoshi; Kobayashi, Taishi*

The Chemistry of Thorium, Plutonium and MA, 254 Pages, 2022/03

The chemistry of nuclear materials such as Thorium (Part 1) and Plutonium (Part 2) was described in relation from the fundamentals on solid chemistry and solution chemistry to the practicals on the experiment and evaluation method in detail. Minor actinides such as Neptunium, Americium, Curium and Protoactinium, was introduced the basics on the solid and solution chemistry.

Journal Articles

Relative oxygen potential measurements of (U,Pu)O$$_{2}$$ with Pu = 0.45 and 0.68 and related defect formation energy

Hirooka, Shun; Matsumoto, Taku; Sunaoshi, Takeo*; Hino, Tetsushi*

Journal of Nuclear Materials, 558, p.153375_1 - 153375_8, 2022/01

 Times Cited Count:2 Percentile:31.78(Materials Science, Multidisciplinary)

no abstracts in English

JAEA Reports

Report on contamination incident and restoration activity in the controlled area of Plutonium Fuel Fabrication Facility

Plutonium Fuel Development Center

JAEA-Review 2021-007, 61 Pages, 2021/06

JAEA-Review-2021-007.pdf:7.56MB

The contamination incident in an operation room (Room No. A-103) of Plutonium Fuel Fabrication Facility (PFFF) in Japan Atomic Energy Agency (JAEA), Nuclear Fuel Cycle Engineering Laboratory occurred on January 30, 2019 during replacement of the double plastic bags which enclose a storage container containing nuclear material. At this time, some of nuclear materials spread all over the room. Nine workers in the room were contaminated with plutonium, but internal exposure of them was not confirmed. In order to restore the Room No. A-103 of PFFF, the Restoration Activity Team organized in JAEA carried out the decontamination work after the investigation of the contamination level in the room. The team had decontaminated the surface of walls, ceiling, gloveboxes and other instruments. Suitable decontamination methods were selected depending on the contamination distribution and installation state of the instruments. In addition to the manual wiping using wet wipes, the exfoliation method using a microfiber mop was applied for narrowed areas. As a result, the loose alpha-contamination level throughout the room fell below the detection limit. On other hand, the fixed alpha-contaminations were confined by painting after the decontamination. This report shown detail restoration activities for this time incident. This information is useful for making a manual on restoration activities and performing practice for the largescale contamination incident. We hope this report will be used for other facilities handled alpha-radioactive materials such as plutonium.

JAEA Reports

Development of fireproof sheet on glove box panels

Kawasaki, Kohei; Shinada, Kenta; Okamoto, Naritoshi; Kageyama, Tomio; Eda, Takashi; Okazaki, Hiro; Suzuki, Hiromichi; Yamamoto, Kazuya; Otabe, Jun

JAEA-Technology 2020-025, 80 Pages, 2021/03

JAEA-Technology-2020-025.pdf:3.72MB

Plutonium Fuel Production Facility was built in 1988 for the purpose of mainly producing MOX fuel of the prototype fast breeder reactor MONJU, and large glove boxes were installed for handling unsealed nuclear fuel material remotely. The panels of these glove boxes are made of acrylic, except for those installed after December 2013. For fires inside the glove box, automatic fire extinguishing systems using halides have been introduced since the beginning of construction, but for fires outside the glove box, there have been issues with direct measures for acrylic. Therefore, we have developed a fireproof sheet that mitigates the effect of fire outside the glove box on the panels as much as possible. As a result, fire-retardant sheets have been selected and attached to the glove box panels. We conducted a flammability test of the acrylic plate attached with these fireproof sheets and a usage environment influence test of fireproof sheets, and obtained good results. In addition, we set up a working group in the Plutonium Fuel Development Center in view of reducing external exposure during the work of attaching fireproof sheets, in which we discussed and examined the work procedure, and summarized it in the basic procedure manual.

Journal Articles

Promoting nuclear fuel cycle and ensuring nuclear non-proliferation/nuclear security

Tamai, Hiroshi; Mochiji, Toshiro; Senzaki, Masao*; Iwamoto, Tomonori*; Ishiguro, Yuzuru*; Kitade, Yuta; Sato, Heigo*; Suehiro, Rie*; Taniguchi, Tomihiro*; Fukasawa, Tetsuo*; et al.

Dai-41-Kai Nihon Kaku Busshitsu Kanri Gakkai Nenji Taikai Kaigi Rombunshu (Internet), 4 Pages, 2020/11

In light of recent delay of plutonium use in Japan and the increasing criticism of nuclear non-proliferation and nuclear security in the nuclear fuel cycle, the validity of these criticisms will be examined for the sustainable development of the nuclear fuel cycle policy. Issues on the view point of nuclear non-proliferation and nuclear security are examined.

Journal Articles

Flexible fuel cycle system for the effective management of plutonium

Fukasawa, Tetsuo*; Hoshino, Kuniyoshi*; Yamashita, Junichi*; Takano, Masahide

Journal of Nuclear Science and Technology, 57(11), p.1215 - 1222, 2020/11

 Times Cited Count:1 Percentile:12.16(Nuclear Science & Technology)

The flexible fuel cycle initiative system (FFCI system) has been developed to reduce spent fuel (SF) amounts, to keep high availability factor for the reprocessing plant and to increase the proliferation resistance for the recovered Pu. The system separates most U from the SF at first, and the residual material called recycle material (RM) which contains Pu, minor actinides, fission products and remaining U will go to Pu(+U) recovery from the RM for Pu utilizing reactor in future. The Pu utilizing reactor is FBR or LWR with MOX fuel. The RM is the buffer material between SF reprocessing and Pu utilizing reactor with compact size and high proliferation resistance, which can suppress the amount of relatively pure Pu. The innovative technologies of FFCI are most U separation and temporary RM storage. They are investigated by the literature survey, fundamental experiments using simulated material and analyses using simulation code. This paper summarizes the feasibility confirmation results of FFCI.

Journal Articles

Nuclear fuel cycle, nuclear non-proliferation and nuclear security in Japan, 3; Challenges on technologies for nuclear non-proliferation/nuclear security and progressing credibility

Mochiji, Toshiro; Senzaki, Masao*; Tamai, Hiroshi; Iwamoto, Tomonori*; Ishiguro, Yuzuru*; Kitade, Yuta; Sato, Heigo*; Suehiro, Rie*; Taniguchi, Tomihiro*; Fukasawa, Tetsuo*; et al.

Enerugi Rebyu, 40(8), p.56 - 57, 2020/07

Strict application of IAEA safeguards and nuclear security should be implemented for Japan's full-scale nuclear fuel cycle. Based on the knowledge and experience of research and development in the nuclear fuel cycle, nuclear material management, the effective and efficient promotion of new technologies should be promoted with scientific and demonstrative measures to strengthen the world's nuclear non-proliferation and nuclear security. Development or sophistication of new technologies, human resource development, and reinforcement of the international framework are future challenge in the international community.

Journal Articles

Nuclear fuel cycle, nuclear non-proliferation and nuclear security in Japan, 2; Significance of sustainable progress in plutonium-thermal policy and R&D of fast reactor

Mochiji, Toshiro; Senzaki, Masao*; Tamai, Hiroshi; Iwamoto, Tomonori*; Ishiguro, Yuzuru*; Kitade, Yuta; Sato, Heigo*; Suehiro, Rie*; Taniguchi, Tomihiro*; Fukasawa, Tetsuo*; et al.

Enerugi Rebyu, 40(7), p.58 - 59, 2020/06

Japan have promoted the peaceful use of plutonium with the nuclear non-proliferation commitment based on IAEA safeguards agreement and Japan-US nuclear cooperation agreement, as well as ensuring transparency of the policy that Japan has no plutonium without purpose of use. In promoting the nuclear fuel cycle, adherence to those measures and maintaining plutonium utilization by means of plutonium-thermal, and a fast reactor cycle to achieve large-scale and long-term energy supply and environmental improvement, therefore, further research and development is essential.

Journal Articles

Chapter 2, Peaceful use of nuclear energy and international relations, 2.3 Multi-national approach of nuclear material management / Chapter 5, Peaceful use of Plutonium and Nuclear Non-Proliferation, 5.1 Japan's policy on plutonium usage

Tamai, Hiroshi

Genshiryoku Heiwa Riyo To Kakufukakusan, Kakusekyuritei; NSA/Commentaries, No.25, p.62 - 68, 2020/06

On the viewpoint of strengthening nuclear non-proliferation and nuclear security, historical background and future issues in multi-national approach of nuclear material management are described.

Journal Articles

Nuclear fuel cycle, nuclear non-proliferation and nuclear security in Japan, 1; Peaceful nuclear use and nuclear non-proliferation

Mochiji, Toshiro; Senzaki, Masao*; Tamai, Hiroshi; Iwamoto, Tomonori*; Ishiguro, Yuzuru*; Kitade, Yuta; Sato, Heigo*; Suehiro, Rie*; Taniguchi, Tomihiro*; Fukasawa, Tetsuo*; et al.

Enerugi Rebyu, 40(6), p.58 - 59, 2020/05

In order to promote the peaceful use of nuclear energy, it is important not only to ensure safety but also to ensure nuclear non-proliferation and nuclear security. Japan has contributed to the international community through strengthening nuclear non-proliferation and nuclear security capabilities with technical and human resource development. However, in the wake of the accident at the Fukushima Daiichi Nuclear Power Plant in 2011, Japan's nuclear power plants have not restarted or plutonium use has not progressed smoothly. Concerns have been shown. Towards appropriate steps of Japan's nuclear fuel cycle policy, such concerns are examined and future efforts are summarized.

JAEA Reports

Measurement of plutonium spectrum using laser induced breakdown spectroscopy; High resolution spectroscopy (350-670nm)

Akaoka, Katsuaki; Oba, Masaki; Miyabe, Masabumi; Otobe, Haruyoshi; Wakaida, Ikuo

JAEA-Research 2020-001, 142 Pages, 2020/03

JAEA-Research-2020-001.pdf:4.0MB

Laser Induced Breakdown Spectroscopy (LIBS) method is an attractive technique because real-time, in-situ and remote elemental analysis is possible without any sample preparation. The LIBS technique can be applied for analyzing elemental composition of samples under severe environments such as the estimation of impurities in the next generation nuclear fuel material containing minor actinide (MA) and the detection of fuel debris in the post-accident nuclear core reactor of TEPCO's Fukushima Daiichi Nuclear Power Station. For applying LIBS to the analysis of nuclear fuel materials, it is indispensable to identify the emission spectrum and its intensity on impurities intermingled within complex emission spectra of matrix elements such as uranium (U) and plutonium (Pu). In the present study, an echelle spectrometer with a resolving power of 50,000 was employed to identify spectra of plutonium of wavelength ranging from 350 to 670nm. The 465 atomic spectra and 341 ionic spectra can be identified. We have confirmed that the measured wavelength of spectra is consistent with published values.

Journal Articles

Outline of the R&D plan for the fast reactor cycle system development in JAEA

Hayafune, Hiroki; Maeda, Seiichiro; Ohshima, Hiroyuki

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 61(11), p.798 - 803, 2019/11

In the "Strategic Roadmap" of Fast Reactor Development decided at the Inter-Ministerial Council for Nuclear Power in December 2018, the development works for the around next 10 years were identified, and the role of JAEA was presented. In response, JAEA has prepared a framework for R&D plans for about 5 years on the fast reactor technology and the fuel cycle technology (reprocessing, fuel manufacturing, fuel and material development). In the future, JAEA will promote independent R&D works based on these plans, and provide the obtained R&D results together with various testing functions of JAEA to the activities of the private sector, etc. Through these actions, JAEA will actively contribute to the future fast reactor development. This article outlines JAEA's policy and the R&D items (development of ARKADIA; Advanced Reactor Knowledge- and AI-Aided Design Integration Approach through the whole Plant Life Cycle, development of standards and standards system, development of safety improvement technology, research in the fuel cycle technology), the policy of international cooperation, the human resource development, and the future perspective were explained.

Journal Articles

Development of an online measurement system using an alpha liquid scintillation counter and a glass-based microfluidic solvent extraction device for plutonium analysis

Yamamoto, Masahiko; Taguchi, Shigeo; Do, V. K.; Kuno, Takehiko; Surugaya, Naoki

Applied Radiation and Isotopes, 152, p.37 - 44, 2019/10

 Times Cited Count:8 Percentile:66.68(Chemistry, Inorganic & Nuclear)

An online measurement system using an alpha liquid scintillation counter ($$alpha$$-LSC) coupled to microchip solvent extraction has been developed. A flow-through cell of $$alpha$$-LSC has been prepared by packing PTFE tube into glass tube to combine microchip. Two-phase flow in microchannel has been stabilized by using coiled tube. The Pu in organic phase has been mixed with scintillation cocktail by T-junction connectors. The system separates and detects Pu by online with detection limit of 6.5 Bq/mL, generating only $$mu$$L-level wastes.

575 (Records 1-20 displayed on this page)